JOURNAL OF COMPUTATIONAL PHYSICS145,359-381 (1998)
ARTICLE NO. CP986013

Numerical Integration of (2 + 1) Dimensional
PDEs for S? Valued Functions

B. Piette and W. J. Zakrzewski

Department of Mathematical Sciences, University of Durham, Durham, DH1 3LE, England
E-mail: B.M.A.G.Piette@uk.ac.durham and W.J.Zakrzewski@uk.ac.durham

Received October 23, 1997; revised April 17, 1998

We investigate the accuracy of various numerical methods used to simulate the time
evolution of partial differential equations for functions valuedsh We use three
different methods to describe the fields: a unit length vector, the polar angles, and a
complex field. We derive some nonlinear finite difference operators and we compare
the different methods used in simulations. For the time integration, we employ both
the 4th order Runge—Kutta and the leapfrog methodstass Academic Press

1. INTRODUCTION

Classical field theories valued in non-flat manifolds arise very often in the descrip
of various phenomena in different areas of physics. In elementary particle physics
example, the Yang Mills theories, the Skyrme model, and the monopoles, all involve fi
valued in non-Abelian Lie groups (typicall@U(n)). The fact that the fields are valuec
in topologically non-trivial manifolds leads to the existence of non-trivial stable solutic
which, in turn, are good candidates to describe elementary particles.

In solid states physics, ferro-magnetic materials and liquid crystals are often describ
a unit vector which corresponds to, respectively, the local orientation of the magnetis
or the orientation of molecules in liquid crystals. The space of configurations is the
two dimensional sphere (ferro-magnets) or a projective spadeewhen the vector has a
direction but no orientation (some liquid crystals).

Cosmological strings are also described by nonlinear sigma models which take valt
a 2 dimensional sphere. Other applications involve the quantum Hall effect and solit
structures in ferromagnets and antiferromagredts, which all involve, in their mathemat-
ical description, topologically non-trivial curved manifolds.

Most of such models possess extended structure solutions whose dynamics are re
sible for the physical phenomena. To study dynamics one has to solve the classical
tions of motion, which, due to the topological non-triviality of the target manifold, &
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360 PIETTE AND ZAKRZEWSKI

non-linear. So, choosing some coordinate variables on the target manifold, the prob
reduces to having to solve a set of coupled nonlinear partial differential equations, of
also with algebraic constraints. Moreover, sometimes one trades the constraints for ha
to deal with fields which can (and do) take arbitrarily large values or possess coordir
singularities.

Luckily, in most cases the manifold can be described in several different but equival
ways. This can be exploited when solving the equations. As the equations can, virtu
never, be solved analytically we have to solve them numerically. This is particularly tr
when we are interested in time dependent problems.

As we will see, the different descriptions often have very different properties; moreov
the number of functions used can depend on the description used. This has important
sequences for the amount of memory and time required to solve the equations numeric

Consider, forexample, amodel valued in the two dimensional siBie@ne can describe
it by a 3 component real vector fiefl= (¢1, ¢2, ¢3) normalised to 1:

¢ =1 (1.1)

The evolution of the model will then be described by 3 equations (one for each componer
¢) together with (1.1). The advantage of this formulation is that each function (compon
of ¢) takes values in the intervat{l, 1]. The main problem, however, is to make sure tha
the evolving fields satisfy the constraint. Notice, that one of the consequences of (1.1)

Lo}
. — =0, 12
¢ 1.2)
whereu is any of the space time coordinate, ..., together with further conditions

which follow from (1.2) by its differentiation.
To avoid the problem of constraints one can parametrise the sphere by introducing
of polar angles on itg.g, 6 andg related top by

¢1 = cog0) coqp)
¢2 = cog6) sin(p)
$3 = sin(9).

This description of the model involves only 2 fields without any algebraic constraint. Ho
ever, this description has its drawback in that this formulation has a coordinate singula
as forf =0, ¢ is not defined. This, in turn, implies that, in general, the equations of tt
model are singular in the fields, which can make the numerical methods unstable.

A third natural way to describe a sphere involves a conformal projection of the sph
onto the complex plane. Defining as such a complex field we can take

o1+ i¢3
W= PP

e (1.3)

Again, this description involves only 2 real functions with no algebraic constraint. Th
time, however, the problem is that the fialdis infinite at the north pole of the sphere



NUMERICAL INTEGRATION OF PDEs 361

(¢3=1). Moreover, for values ap with ¢3 close to 1w becomes very large, which makes
most numerical methods difficult to implement.

The most common manifolds encountered in classical field theories are Rieman
symmetric spaces, and in particular, the sph&fgSigma models, cosmic strings), unitary
groupsSU(N) (Monopoles, Yang Mills fields, fields of the Skyrme model), as well as tt
projective plane<CP" (sigma models) an®P" (liquid crystals). Each of them can be
described by a real or a complex matrix satisfying a set of algebraic constraints [1], but
also be described by a set of parameters equal to the dimension of the manifold.

Over the past few years, we have performed many numerical simulations studying val
extended structures in many-21) dimensional models using both relativistic and Landau
Lifschitz type dynamics. Most of our studies involved fields value&inSometimes the
equations of motion involved only the simplestmodel terms, at other times additional
terms were added (such as Skyrme and various potential terms). In our studies we
various formulations of our models, always paying special attention to the reliability
the derived results. Of course, all numerical methods involve numerical errors; so in
simulations we have always tried to reduce such errors to a level at which we can trus
general features of the studied phenomena. So, for some phenomena (likesbat@ing
[2]), relatively small lattices have already been sufficient, for some others (like the rat
soliton “shrinking” in the pureS> model [3]) we needed large lattices and sophisticate
multi-grid methods.

Having gained experience from some simulations we have decided to compare our r
ods (for our types of fields) to decide which methods to use in future, and how effici
they are (both from the computer memory point of view and the time required for a gi
simulation). In each case we make sure that errors are very small, but then there
point in using a method which reduces a negligible error even further at a price of len
ening significantly the CPU time of the simulation. At the same time, if the CPU time
the memory requirements are not increased there is no “harm” in using a more acc
method. In fact, for (2 1) dimensional model simulations, given the present state of co
puter technology, most methods work quite well and produce reliable results in reasor
times. Some simulations of (81) dimensional models have also been performed [4] b
they require much more computing power hence the need to find accurate and econo
methods of numerical integration. We thus hope that the results of this paper, in add
to providing us with an insight into the accuracy of simulations ia-(® dimensions, will
also be useful when thinking of simulating the dynamics of extended structures-ih)(3
dimensions.

Thus, in this paper we compare different methods of studying the dynamics of soli
like structures of the (2 1) dimensionals’ sigma model. We use 3 different formulations
of the model. For each formulation, we tackle the problems created by the field descrif
and develop a stable method to solve the equations satisfied by the fields. We con
the results of all methods, focusing our attention on the accuracy of the results anc
computing requirements.

2. THE $? SIGMA MODEL

We will concentrate our attention on the numerical investigations of the extended st
tures and their scattering properties in the{(2) dimensional sigma model. This model is
defined on the two dimensional plane (locally parametrised &gdy) and the field takes
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its value in the spher&. The model itself is defined by the Lagrangian,
a ad ad d ad ad
2 ot ot 9x 9x 9y 9y
2 3¢ 2 2 8¢ 3(]5 2
2 X ay ox ay
9 9p\* (3¢ 99\
-7 - x , 21
Jr<at 8x> +<at ay (2.1)
where ¢ satisfiesp - ¢ = 1. The first term of (2.1) describes the pusé sigma model
(K =0,V =0). Its extended static solutions are unstable (they blow up in a finite time) |
3]. For this reason, to stabilise these solutions, the last two terms were introduced [5
The term proportional td ? is called the Skyrme term and is a potential term. Their
combined effect is to set the scale and so to fix the size of the static solitonic solutions t

preventing the solitons from expanding or shrinking.

From (2.1) we can derive the following expression for the total energy of a given fie
configuration:

B ¢ 3¢9 3¢ 0 0 3¢
E_/dxdy{(a 8t+a'&+a—y'a_y> (¢)+—
g ap\2 ||’/ ¢ 9 dp 0¢ dp 3¢ dp 3¢
‘Qm'w)*‘m Qm'w*wyww)‘@nrw) (m w) |
(2.2)

The equations of motion of the model can easily be derived using the Euler Lagrai

equations where, to take the constrajnt ¢ =1 into account, we can use a Lagrange
multiplier.

Eliminating this multiplier we find that the equation of motion is given by
82
a—tf = B{(L - P)gii — plon* — (1 = P)VyV (@) + K* [0l [*(&i - )

ay

"E

ay

+ (L= P)(2pit (@i - ¢0) + i (B - b)) — i (Bi - b)) — || (i - D))

+ il (@r - Bi) — (&1 - di)] + ¢i (D - dij) — i (i - djj) — i (P - di0)]} (2.3)
taken together with the constraifit¢ = 1. In (2.3) we have used the notatifp= % i =
Pl E =24 2 andfigihy = 085 200t | ot oy of ot
Moreover,P = ¢¢' andB is the 3x 3 matrix given by

1 26 36t 36 0!
B = ([1+G]1+(1+G)K (E)x a4 +8y8y>

t
w@x%x%%))
ax  ay ax  ay
2

3¢ |*
aX

ay dy dy? Jy dx dyax ' 9x dy 9xady "

=(1+G)?+(1+G)K* (

A I \?
@9)

By
with G = K?|¢i|2.
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FIG.1. £ soliton energy densityw = (X + iy).

Before concentrating on the methods used to solve these equations, let us say a few
about the known solutions of (2.3). Static, finite energy, solutions of the $iraodel
(K =V =0) are all known [8, 9]. They are given by holomorphic or anti-holomorph
functions:w = f(x +iy) or w = f (x — iy). To have finite energy solutions the function
f must be a rational function and the energy is then proportional to the highest degre
the denominator or the numerator. An important property of these solutions is that the)
topologically stable. This means that the solutions cannot decay and can be thus consi
as models of solitons. The simplest static solution is given by

w = A(X+iy —a), (2.4)

wherei anda are 2 arbitrary complex parameters. Rather than looking at the shape of
functionw itself itis more appropriate to look at the energy density for the solution. Figur
shows this density for (2.4). It can be shown that (2.4) fixes the position of the soliton.
On the other hand, fixes its size. As (2.4) has the same total energy (the volume under
surface in Fig. 1) for all values dfanda it is easy to check that whenis large the soliton
is spiky and well localised, and whernis small, the soliton is flat and spread out.

In this paper we will describe the simulations of the model (2.1) for 2 different potentic
Vh(¢) = ‘—;(1 + ¢3)* andVg(¢) =0(1 — ¢3), Whereps denotes the third component of the
vector ¢. The first model has harmonic static solutions, henceHhsubscript for the
potential. This model was studied in detail in [5] and its simplest static solution is given
w= %(x +1iy — a). The second model was studied in [6, 7] and is usually referred to
the baby Skyrme model. Its static solutions are not known analytically but their construc
(for one soliton or many solitons on top of each other) reduces to having to solve an ordi
differential equation whose solutions decay exponentially at infinity [6].

Before we discuss the numerical integration of these models let us present their descri
in terms of polar angles on the sphere and the stereographic projection of the sphere
the 2 dimensional plane.
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3. THE POLAR ANGLE FORMULATION

Instead of using a three component vector to describe the sphere we can use the
coordinates or$’. The advantage of such a description is that it involves two fields inste:
of three but, on the other hand, we know that the equation of motion has coordinate
gularities. To avoid the numerical problems that this generates we can use an idea |
differential geometry, namely to divide the sphere into regions and employ a different s
tem of coordinates (maps) on each region. Such maps would have no singularities in t
own domains and both of them can be extended to allow for an overlap between the
domains.

Our potentials are functions gk only. This means that the models we are interested i
are invariant with respect to rotations around ¢gexis. To preserve this symmetry in our
systems of coordinates we cut the sphere “vertically” into two overlapping bands paral
respectively, to thed, ¢3) and ¢,, ¢3) planes and use, respectively, the pairs of angle
(61, 1) and 0z, o) with 0< 6, , <7 and 0< ¢ 2 < 2r:

¢1 = cog61)

¢2 = sin(6,) cog¢1) (3.1)
¢3 = sin(61) sin(e1)

¢1 = —sin(6z) codyy)

¢2 = co96y) (3.2)
@3 = sin(6,) sin(g2).

When we want to use the two different maps on the same grid, we must be able to transf
the coordinates of any point from one map to the other. Assuming that the values of
functions acos and asin lie in the range#Q and [, ], respectively, we can use the

following relations:

62 = acogsin(f1) coS¢1))

01 = acog—sin(d,) cogyy))

b2 = asm( a- ssiir?n(f;l):;z(sf(l;l))l/Z)’ =y

- asm( a- ;g(eelj)sgzg(il)ﬂﬂ)’ < ¢2)
o= asm((l - ss'iirwszgz))scig(l;))m)’ %<5

- asm( a- :ii:z(f;j)scizgélz»lﬂ) ey

The Lagrangian density can easily be computed using (2.1) and (3.1) or (3.2). It ta
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exactly the same form for the two maps,
L= /dx dy{%(@f —62) +sirf(0) (g2 — ¢?)) — V0, ¢)
- K; Si?(0) (007 + 9f67 — 9707 — 26i b1 + (Gi91)?) } (3.4)
where forV we take one of the two potentials described before,

V{0, p) = %(1 + sin() sin(g))*

(3.5)
VB(0, ¢) = 0(1 — sin(@) sin(p)).
The energy is then given by
1 .
E= /dx dy{é((etz +67) +sir(0) (o + ¢7)) + V(0. )
K2 .
+ = Sif(©0) (07¢f + {6 + ¢0] — 2rpu0h g — (G19)?) } (3.6)
and the equation of motion, again, takes the same form for the 2 maps,
1 .
ou =5 ((1+ K207)Fy + K2sirf(0)6i ¢ F,)
(3.7
1 .
ou = 5 ((1+ K2sif©)p?) F, + K¢ Fy),

where
D = (1+ KZsirP(0)¢?) (1 + K262) — K*(61¢1)? sir?(6),

Fo = 6ii + sin(®) cos0) (p? — ¢?) — % + K?sin(@) cos0) [67 (97 — ¢f) — 670f
— (0i¢0)%) + 20000191 + KZSIn(0) (01 (97 — 07) — it (Gt — Oii) + @1 6i6)
— 6 pi9; + 2600 — @i (e + i) ],

1 v

Sir(9) d¢

=+ @ii (9t2 - 912) — 2011 606; + 64 (B + Oipp) + @i 6i0) — 6,6,05].

F, = @i — 2cotg0) (Ger — 6ipi) — K2[6ii (6;¢; — 6i9?)

4. THE CONFORMAL PROJECTION ONTO C?

Our third method involves projecting the sphere onto the complex plane using the cor
mal projection (1.3). The field is then described by the complex {ielfhe only singularity
of w corresponds to the north pole of the sphere= 1. At this pointw becomes infinite.
We can forsee that this will lead to problems for the numerical integration as, close to
value,w can become arbitrarily large making the numerical method unstable and un
able. To avoid this problem, we can again use two different maps. This time we can tal
and it inverseu = 1/w for, respectively, the southern and the northern hemispherg% of
Formally, the Lagrangian and the equation of motion are identicabfandu as long as
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we defineV (Ju|?) =V (1/|w|?). We have

(lwel? — Jwi] ) 2 K? 2,2
L= -V _ .
/dxdy{ A+ T0p)? (Iw|?) (1+|w|2)4(8|wt| |wi
—4|wi|2|wj|2 — Z(wtu_)i =+ wj l;t)z + (wj l;j + iji)z)}, (4.1)

lwi)? + | ||) 2 K2 2,2
E = V —— i
/dxd { N (e R e UG

+ 4w Plwj|? — 2(wwi + wiwy) — (wiw) + wjw;)) } 4.2)

where

0/ 2w? \*
vH<|w|2>=§(1+|w|2 :

(4.3)
Ve(lwl?) = .
s(lwl®) 15 (w2
The equation of motion is now given by
__Fa-FB “.4)
wtt_a2—|B|2’ .
where
2K 2|w; |2
(14 [w|»?’
_ 2K2wi2
1+ lw|??’
w 4K?2w . _
F—w: +2(w?— w2 w 2.2 =2 .2 =2 .2 | 4
i+ 20— ) T e e T s — wed — fuil
20,12 2K? 2_ = 2 — — —
+ 2w |wi|?] — m[ i Wi — wij w + wij wi wj — wii (Wewi + wijwy)

— wijwiwj + 2wy wewi + wi (Jwel* — [wjl?)] - %(H lw[?)? avz.
dw]

Next we will use the methods we have just described to solve (2.3) and to compare tl
results. In each case, we have to solve a set of second order partial differential equation
perform the time integration of the equations we will use both the 4th order Runge—Ku
and the leapfrog methods. We will compare both methods and will describe their advante
and disadvantages. To evaluate the spatial derivatives we will use finite difference opera
The equations we want to solve are nonlinear in the derivatives but they are invariant ur
spatial rotations. To take advantage of this property we will introduce, what we will call, tl
isotropic nonlinear finite difference operators. Then we will describe how one can red
the problems associated with the numerical integration of (2.3) and finally, we will compe
the results produced by the different methods.
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5. NONLINEAR FINITE DIFFERENCE OPERATORS

To evaluate the spatial derivatives we use finite difference operators. It is easy to note
(2.1) is rotationally invariant and, as a consequence, all the nonlinear terms involving de
tives in the equations of motion (2.3), (3.7), and (4.4), are of 3 different types: the Lapla

A(f)= 2272+327£ scalar products of gradientsy, = 2f 294 91 99 ‘and operators ofthe form

figjhi; where the sums oveérandj are implicit. Thgéiar)r(]plgysg);nethod to evaluate these e’
pressions involves computing each derivative separately and then combining them tog
toform the desired operator. For example, to evaluate the Laplacian, we can cm%zgépmd
2272 and then add them together. If we label each point of the two dimensional regular sq
grid with 2 indices so that (x, y) = f (n, m), and calldx the distance between two adjacen
lattice points, we hav%i—i(x, y) =1/dx?(f (n+1, m)+ f (n—1, m)—2f (n, m))+O(dx?)
andzzTL(x, y)=1/dx3(f(n,m+ 1)+ f(n,m—1) — 2f(n, m)) + O(dx?) leading to the
well known 5 point Laplacian.

Having performed some simulations we have found that we cannot use the 5 point Lz
cian. The grid effects are strong and destroy the rotational symmetry of various quant
such as the energy or the topological charge densities. This, in turn, affects the evoluti
the solitons. The effects are small but non-negligible. So, we have to go beyond the 5|
Laplacian. However, there are many finite difference operators which in the limit of sn
lattice spacings converge to the Laplace operator. An obvious improvement on the 5 |

Laplacian will involve a 9 point one, i.e., a laplacian of the type
DLgeno(f) = (—(4a+4b) fi j +a(fipa; + fij + fijo1+ fij—2)

+b(figr 1+ ficgjra+ fignj—1+ figj-1) (5.1)

(a+ 2b)dx2
for a reasonable choice afandb. By trial and error we have found thiathas to be a rea-
sonable fraction o (somewhere between 0.1 and 0.7). Of theesed, b = 1 is particularly
convenientj.e.,

DLo(f) = (=20fi; +4(fijej + ficej + fijor+ fij—0) + fivrjer + fictje

+ fijrj—1+ ficyj-1) (5.2)

1
6dx2’
as then its first correction term, like the Laplacian itself, is also invariant under rotati
(isotropic) and vanishes for harmonic functions:

dx® 4
DLs(f) = A() + 5 A%(F) + Odx?).

So, up to the first correction term we see tbBatg( f ) does not break the symmetries of (2.3)
Moreover, whenf is a harmonic function, like the static solution (2.4), the first correctic
term vanishes.

Isit possible to derive nonlinear differential operators with similar properties for the otl
2 types of operators we have to evaluate? To evaluate the scalar product of gradien
simplest approach would involve evaluating the first derivatgéeand % using say, the
symmetric difference operators and then using these results to calculate the scalar pre
However, instead of computing this operator along the lines of the lattice, we can
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evaluate it along the diagonals or even better take a linear combination of the transv
and diagonal operators with the appropriate coefficients.

Defining the diagonal coordinatas= x +y andv = x — y, and introducing the following
finite difference operators on the grid,

Dyf = 1 f(n+1,m — f(n—1,m))
X _2dX( ) ( 7)a

D,f = 1 (fm,om+21 — f(n,m-1))
y _2dX ’ 9 ’

1 (5.3)
D,f = 4#‘X(f(n+1,m+1)— f(n—1,m-1)),
1
D,f= 4—dx(f(n+1,m—1)— f(n—1,m+1))
we find that a good choice corresponds to
2
DG(f,0) = é(DXfDXg+ DyfDyg+ DyfDyg+ D, fD,Q)
of og of ag
= 5xax Tayay dX*(feAgy + fyAgy + gxA Ty + gyAfy) + O@dx?)

which is isotropic and harmonic up to the second ordetxn
For the third type of operators we can follow a similar method. First we define the secc
order finite difference operators

Dux f = d—iz(f(n+1,m)+ f(n—1,m) —2f(n, m),

Dy, f = d—iz(f(n,m-|-1)-|- fnm-=1) —2f(n, m)),

Dy f

Duuf
Dy, f

Dy, f

and find that

. 1
T 4dx2
—fn+Lm—1)—f(n—1,m+1), (5.4)

~ 4dx2
= 4dx@

T 4dx?

(fW+1L,m+DH+fn—-1, m-1)

(fn+1l,m+1)+f(n—1, m—-1) —2f(n, m)),

1 (fn+1l,m-1D+f(n—1,m+1) —2f(n, m),

(fn+1m+fn-=1m—-fn,m+1) — f(n,m-1).

2
DT(f.g.h) = 3 (Dxf DxgDyuh + Dy f DygDyyh + (D f Dyg + Dy f Deg) Diyh

+2(D, fDygDyh + D, fD,gDy0 + (D, f D,g + D, f Dyg) Dyyh))

dx?
= figjhy; + E(fkglhiikl + (fx9y + fyGx)huyii)

dx?
+ ?(fi hij Okkj + Gihij fik))-
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For this choice we see that the first correction term also vanishes for harmonic funct
but, this time, the extra term is not invariant under rotations.

6. IMPLEMENTING THE INTEGRATION METHODS

Using¢

The easiest way to study the time evolution of extended structures 8f gigma model
involves using the formulation. This is because this formulation does not require the L
of different maps to describe the field. If we look at (2.3), we see that it is given by a se
3 second order hyperbolic equations which can be solved as an initial value problem
the time evolution we have used the 4th order Runge—Kutta or the leapfrog methods.
are simple to implement and we will compare their relative accuracy. The main diffict
with the ¢ formulation is to keep the length of the vectbequal to 1 (to satisfy (1.1)). If
we start with an initial conditiorp (t = 0) and%(t =0) satisfying (1.1) and (1.2), we can
hope that the time integration procedure will preserve this property. In practice it ne.
does and after a few integration steps the normalisation of the field is still close to ut
However, as the equation of motion holds only when ¢ghiéeld is properly normalised
this small error quickly exponentiates and the numerical procedure becomes unreliab
practice ignoring the constraint introduces instability into the method and it does not 1
long before ¢ - ¢) explodes. A simple solution of this problem is to normalise the ffeld
toland projec% onto the plane orthogonal gpafter every integration steps. This methoc
works reasonably well and was used in [5] and some other works [6, 7].

Another method involves keeping the Lagrange multiplier (which imposes the constr
¢ - ¢ =1) in the equation of motion and arranging for its effect to be such that the constr
is satisfied. This corresponds to projecting the vegtonto the sphere but using a different
projection scheme.

As we will see, our method of dealing with the constraint can be improved further «
some of the methods we analyse here will give more accurate results. For some prok
the accuracy of the normalisation method is sufficient; some others will require the us
our more sophisticated approaches.

To evaluate the spatial derivatives we can use finite difference operators, evaluatin
derivatives of each componentgfndependently. This simple approach has the disadva
tage that it ignores the relations that exist between the different componeptsechiuse
of (1.1). Indeed, one way to derive finite difference operators is to expand the fields
power series and match the obtained expressions with the values taken by the field ¢
lattice. Thus we could put, for the field close to some lattice point,

U =a+bx+cy+dx®+ey+ fxy+...,

wherea, b, ¢, d, e, and f are vectors whose values are fixed by the value of the field at it
some adjacent lattice points. Performing such a construction for each lattice point we se!
our fields are correctly normalised at each point of the lattice used for its construction,
not in between them. Thus (1.1) and (1.2) are not satisfied everywhere in the plane. Thi
be put right by defining = W /(¥ - W)¥2, Theng is correctly normalised everywhere anc
all its derivatives can be expressed in terms of the derivativdswhich can be evaluated
numerically using the expressions described in the previous sections.
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For example, to evalua%, we note that

d 1 i\ gu 1 ow
00 _ 2 (1- 2N _ L p2Y
u | wiZ)au T v au

whereP is the projector onto the one dimensional sub-space spannéd Wen%—‘ﬁ can
be evaluated using the appropriate finite difference opeEto¥) and exploiting the fact
that at each lattice poirt and ¥ take identical values we have

0
% — (1— $dHDy(W) = (1 — ¢¢")Dy(). (6.1)

Similarly, for the second order derivatives operators, we can derive the following express

82
9% Dy — Dugp(¢ - Do) — Dup(d - Dudp) — $[(Dugh - Do)

dudv
+ (¢ - Dup) — 3(¢ - Dug) (@ - Dy9)]. (6.2)

This result can also be obtained by putting

9%¢
dudv

= Dw¢ —aDu¢p — D¢ — v
and using

2
¢ 09 09 _

Sy " au

’

u v
which follows from the normalisation af, to derive the expressions far 8, andy .

Using the Polar Angles

When using the polar angles the main difficulty stems from having to use two differe
maps to describe the field. To do this we have to store, at every lattice point, the value
the fields® andg (and their time derivatives) as well as the information as to which map
used at this point (we can call them maps 1 and 2 and store the index of the map).

The finite difference operators that we use involve only the 8 nearest neighbours
given lattice point. To evaluate the finite difference operators at a given point on the lat
we must make sure that the fields at these neighbouring points are expressed using the
map as the map of the point in question. As the grid is scanned one lattice point after anc
we make a copy of the fields for the 8 neighbouring points and convert them, if required
the map being used for the current lattice point. Then together with the field at the “cent
point, the 8 converted fields form a smalk3 subgrid which can be used to compute the
finite difference operators at this point.

Notice that the two maps will be used in two separate regions of the lattice, and that
“conversion” between the two maps will have to be performed only in the neighbourho
of the curve which separates the two regions. On the other hand, this border curve
move with time and so the program has to check at each time step where on the gric
“conversion” is required.
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Thereis afurther problem that arisegds defined modulo2. To compute the difference
between 2 values @f we must take the value modula 2Thus, for example, the difference
between 6.1 and 0.1 isb— 27 — 0.1~ —0.28318 and not 6.

When the values of bothandy have been updated, during the time integration, one mt
check that their new values are still inside the correct range and, if they are not, perforn
appropriate transformation. The most common cases of problems arisepfegomes
larger than 2 or smaller than 0. We must then subtract or add, respectivelyozhe
original value.

After each time integration step we must also check, at each lattice pointy tBat
0 <3 /2. When this condition is not satisfied we must use (3.1) or (3.2) to transform
field from one map to the other.

The 4th order Runge—Kutta method involves 4 successive sub-steps and we must
sure that the same map is used in all substeps for a given lattice point. It is compulso
use the same map in all 4 sub-steps as the last part of the Runge—Kutta method inv
adding a linear combination of the 4 terms computed in each substep. This only m.
sense if they have all been evaluated in the same map. We can thus only change the
after each time step.

For the leapfrog method there is a further problem. The integration procedure ca
summarised as

f(t+dt/2) = f(t—dt/2) +dt«F), (6.3)

where f (t) represents the fields at tinheand F (t), the right hand side of the equation, is
evaluated with the fields at timieAs, at some points of the grid,(t) and f (t — dt/2) may
use different maps we must convéitt —dt/2) to the same map ais(t) before we evaluate
(6.3) (we could also convertt(t) before computind- (t) but this is less appropriate).

Using the Conformal Projection

For the description in terms of the complex fieldwe introduce two different maps,
w and Yw, and at each point we use the map which satisfies the condiitidnc 1. The
implementation is similar to the one described for polar angles. Again, at each lattice p
we have to build a % 3 local grid and convert the eight neighbouring points to the same m:

7. NUMERICAL COMPARISONS

We have performed many comparisons of different methods of integration applie
different models; in particular, we have looked at

—the S model
—the holomorphic Skyrme model
—the baby Skyrme model.

For each of these models we have used 6 different methods of simulation. As we
refer to them inside the tables describing our results we have chosen a short name, gi\
boldface in the list below:

—Phi field Phi).
—Phi field with curvature correction®hi-Cor).
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—W field (W).

—W field with nonlinear finite difference operatoM/{NLFDO).

—Polar angles fieldRolar).

—Polar angles field with nonlinear finite difference operat®agr-NLFDO).

We have also compared the 4th order Runge—Kutta and the leapfrog methods. Fo
the simulations presented here we have used fixed boundary conditions. This was to r
the comparison between the different methods easier. Otherwise, we usually put s
absorption at the edge of the grid to absorb radiation.

We present our results by looking at each model separately and comparing the diffe
methods of integration of the fields of this model. The tests we have performed in each «
are quite similar. First we looked at the field of one static soliton. Its analytical formis knov
in the case of th& model and the holomorphic Skyrme model. For the baby Skyrme mod
we have computed it numerically, by solving the appropriate ordinary differential equatic
The field of such a static soliton should be a solution of the equation of motion. However
numerical simulations it does not solve it exactly; hence we can study its evolution dur
a certain length of time and then measure how much the configuration has changed dt
this time.

Another simple test consists in boosting the soliton. As the models are all Lorentz
variant, if F(X, y) is a static solution of the equation, then so is the boosted solutic
F(y(x —vt), y) wherey =1/(1 — v?)%2,

Finally, we can perform a scattering of solitons. However, this time we do not have &
analytical solutions with which to compare the fields obtained in our numerical simulatiol

To quantify the quality of our integration we can look at several different paramete
First of all, we can monitor the conservation of energy and/or the topological charge. |
worth pointing out at this stage that we have discretised the equation of motion and
energy density separately. This implies that our discretised enieegyo(ir approximation
to the total energy) is not a conserved quantity for our set of discrete equations. Of cou
as it approximates the conserved energy its variation with time is small. Thus, when
look at the time dependence of this energy we do not monitor just the quality of the til
integration for our system of ODEs but, rather, evaluate the overall quality of integrati
for our PDE.

As mentioned before, when we use the vegipwe have to normalise this vector, at
least, after every few steps of time integration. As we scan the grid to norngalise
find it useful to compute the maximum 6fg|? = [|¢]? — 1| (Maxgra (8|¢|%)), over the
grid and to monitor its evolution as a function of time. Our experience has taught us t
when this quantity becomes too large this is usually a sign that something is wrong w
the integration. We can only compute I\/g,aa<(8|¢|2), for the¢ field so this quantity is not
very useful when comparing the different methods of integration. It is nevertheless a us
quantity to monitor in the formulation when the fields change a lot, so we will give ar
example of it when we analyse a scattering of solitons.

In some cases we know the exact expression for the figldl, y, t) at the timet. We
can thus measure the quality of integration by calculating the difference between the e
configurationpe and the one obtained numericafly. For this we can use the expression

A¢:/dxdw¢e—¢n|. (7.1)
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As the vectow lies on a sphere, ib. andg, are completely uncorrelated, thgf — ¢, |2
equals 2, on average, anap is given by the area over which the integration is performe
(multiplied by +/2).

As we are only interested in the field close to the Skyrmion we should conpaire
the area covered by the Skyrmion. In the example we have chosen and with our choi
parameters, the radius of our Skyrmion is about 5 units; th¢isshould be compared to
115. We can also scan the grid and look at the largest difference between the two f
Maxd ¢ = MaXgria |e — ¢n|. This will give us an upper bound on the error in the evaluatic
of the field.

When we do not know the exact solution, we can compare the fields by evaluaging
for any two fields obtained by two different methods. In practice, we will choose t
methods which we believe to give the most accurate answers and then compare all the
configurations to the fields obtained with these two methods.

The € Model

Aswe know the analytic form of the static solution of (2.3), the first test we have perforn
involved taking such a solution and checking to what extent it satisfied also the nume
equation. We have already mentioned that the soliton solutions of this model are uns
and that the smallest perturbation can make them shrink or expand. This implies that ¢
perturbations, caused by numerical errors, are likely to make the soliton expand or |
up unless the method of integration is extremely accurate. Integrating the time evolutic
this model is thus very difficult because of the genuine instability of the solitons.

What we have found is that the most accurate method of integrating’thedel is to
use the complex field together with the nonlinear finite difference operators. When v
used the 9 point Laplacian (5.2) and the figldithout the curvature corrections the solitor
blew up and with the other methods, the soliton oscillated in size. Table | summarises
observations. The first column presents the error in the conservation of energy. The se
one shows the amplitude of oscillation, as a fraction of the total size, of the maxim
of the energy density of the soliton. The last column gives the maximum Kinetic ene
of the soliton. This last quantity measures the inaccuracy of our scheme as this enel
entirely due to the fact that our initial condition does not satisfy our discretised equa
and, as a result, the soliton oscillates and produces some waves. The energy of the s
in our units, is 1. We do not present the results of the comparison of the integrated

TABLE |
Static S* Soliton on a 201x 201 Grid, Using the 4th Order
Runge—Kutta Method

Method AE Oscillation Kin. En.
Phi-Cor 6.5 10% 0.19 610°
W 10°° 3.210* 106
W-NLFDO 3107 6.510° 510
Polar 6.5 10° 51072 2.510°
Polar-NLFDO 1.7 10 6.5107? 4510°

Note. E=1.
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with the exact solution as this depends too much on the value of the time at which
comparison is made. Let us just mention that for the W-NLFDO meth@g= 6.7 10-°
and that the largest difference on the grid between the integrated field and the exact soll
was Maxs¢ = 1.3 1078, thus showing the amazing accuracy of this method. In Table | w
do not include any values for the Phi methods as in these cases the soliton blew up.

We see from Table | that the W-NLFDO is by far the most accurate method to integr
this model, followed by the W method and the two methods which use the polar ang
When we used the vectgrwith corrections the results did improve and the soliton did no
blow up, but this method was still substantialy less accurate than the other four.

Given the fact that th&? model is so intricate to integrate, we will not compare the
different methods of integration for a boosted soliton and leave this comparison for
Skyrme models.

The Holomorphic Skyrme Model

To evaluate the accuracy of the integration of the holomorphic Skyrme model we h;
chosen the following parameter valus, = 6 = 0.2 and we have performed the simulations
on a 201x 201 grid ranging from-10 to 10 in both directions and on a 401401 grid
ranging from—20 to 20 (hencelx=dy=0.1). The static solution is then simply given by
w=X-+1iy.

In our first test we have taken the static solution at rest at the centre of the grid as
initial condition and have integrated the equation up+0100; we have then compared the
final configuration with the initial one. The results are given in Table II.

Once again, W-NLFDO is the most accurate while Phi the least accurate method. W
Polar-NLFDO are second best while Phi-Cor and Polar are very comparable. Note also
the error varies between 2% (Phi) and 0.001% (W-NLFDO).

For the second test, we have placed the soliton on the grid starting &t-1, 0) and
boosted it across the grid with the spaed 0.2. After integrating the equation upte= 10
the final position of the soliton was found to be, as expected, quite close-1@, 1). It
was not exactly at this value—but this was due to the tail of the soliton (which is cut off |
the finite size of the grids used in the numerical procedures). This inacurracy has little
do with the method; it depends much more on the size of the lattice. To assess the qu
of the integration, we have evaluated the difference between the analytical expressior
the displaced Skyrmion and the fields obtained numerically. The results are presente

TABLE 11
Static Holomorphic Skyrmion on a 201x 201 Grid Using the 4th Order
Runge—Kutta Method

Method Ap Max §¢ AE
Phi 1.2 0.017 510
Phi-Cor 0.14 0.0025 216
w 0.035 0.001 160
W-NLFDO 0.00014 2.8 1¢° 108
Polar 0.22 0.0042 106
Polar-NLFDO 0.05 0.0013 716

Note. E=1.125.
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TABLE Il
Boosted Holomorphic Skyrmion on a 401x 401 Grid Using the 4th Order
Runge-Kutta Method

Method A¢ Max 8¢ AE Awe Max 8w ¢ Ay Max ¢
Phi 7.9 0.03 1.8 1¢ 2.3 0.031 2.05 0.03
Phi-Cor 5.8 0.01 710 0.25 0.0036 — —

w 5.6 0.01 2316 0.038 0.0011 0.27 0.0036

W-NLFDO 5.6 0.01 810’ — — 0.25 0.0036

Polar 6.3 0.036 7510 0.72 0.036 0.55 0.035

Polar-NLFDO 5.9 0.022 3510 0.33 0.022 0.33 0.021
Note. E=1.149.

Table III. All the obtained results appear to be very comparable. However, this is, ag
mainly due to the fact that we have performed our integration on a finite grid and that the
of the soliton, which extends beyond the edge of the grid, has been slowing down the sc
progressively and as a result, the soliton did not make it all the way to its final positi
Thus we are comparing two field configurations which are slightly displaced with resy
to each other.

To perform a more meaningful comparison of the different methods we have decide
compute the relative differences between the fields obtained in different numerical inte
tions. We have taken as the reference fields the fields obtained with the W-NLFDO an
Phi-Cor methods and labellely and Max3¢ with indicesW and¢, respectively, when
the differences were evaluated with respect to these fields.

Looking at the table we see that Phi gives the least accurate results while, this t
W, W-NLFDO, and Phi-Cor produce the most accurate results and that the two mett
involving the polar angles are comparable in terms of their accuracy. When we compar
different fields after integration, the maximum error varies between 1% and 4%.

The Baby Skyrme Model

To study the accuracy of the integration of the baby Skyrme model we have chc
the following values of the paramete#s? = 1, 6 = 0.1. Moreover, we have performed the
simulations on a 20% 201 grid ranging from-10 to 10 in both directions or on a 461401
grid ranging from—20 to 20 (hencelx=dy=0.1). The static solutions were obtained by
solving an ordinary differential equation [6].

In our first test we have taken as our initial condition the static solution at rest at
centre of the grid and have integrated the equation upt&00. Then, for the second test,
we have placed the soliton on the grickat (—1, 0) and boosted it across the grid with the
speedv =0.2. The comparison of the results obtained in different methods is summari
in Tables IV and V.

Looking at the tables we observe that, for this model, the difference between the diffe
methods is far less striking and it is not clear how to identify the best one. Using one of
W methods looks like the best choice for a moving Skyrmion while these methods see
be the least accurate ones for the static fields. In any case, the differences between
6 methods are relatively small as their accuracies differ by only a factor of 3 or 4 and
differences between the methods are always below 1%.
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TABLE IV
Static Baby Skyrmion on a 201x 201 Grid Using the 4th Order
Runge—Kutta Method

Method A¢ Max§¢ AE
Phi 0.18 0.0035 9 16
Phi-Cor 0.29 0.0017 16
W 0.57 0.0054 210
W-NLFDO 0.59 0.0044 16
Polar 0.39 0.0039 516
Polar-NLFDO 0.44 0.005 8 106

Note. E=1.565.

Finally we have compared the results of simulating the scattering of two baby Skyrmio
We have looked at a head-on collision between two Skyrmions located initiadly=at 10
andx = 10 each sent towards the centre of the grid with the spee@.5. We have used a
401 x 401 grid extending from-20 in 20 in both directions.

In all simulations the two Skyrmions moved towards each other, collided just befc
t =20, then overlapped and came out of their interaction region at 90 degrees algng tl
axis and with a speed at about half of its initial value (such a collision is highly non-elasti

As there are 2 Skyrmions, the “reference” value\af is 230. We see from Table VI that
in the worst case we have an overall accuracy of about 40d that the largest difference
between 2 vectors on the grid is 0.002. The least accurate method seems to be Phi wi
the curvature corrections, while both the polar angle methods are quite accurate. Phi:
and W-NLFDO have a large overall difference between them despite the fact that the lar
difference between the two vectors is only 0.0065. This suggests that the difference is, r
probably, due to an overall displacement between the 2 fields.

We have mentioned before that, when using is useful to look at how much the fiett
must be normalised after each time integration step. In Fig. 2 we shoyygide| obtained
with the Polar-NLFDO method foa 2 Skrrmion scattering. The peak just befdre- 20
corresponds to the time when the 2 solitons overap, “are on top of each other.” In
some simulations, mgxq §|¢| can suddenly change by a few orders of magnitudes. This
usually a sign that the grid is too coarse for the simulation and that a finer mesh shoul
used.

TABLE V
Boosted Baby Skyrmion on a 401x 401 Grid Using the 4th Order Runge—Kutta Method

Method A¢ Max §¢ AE Awe Max dwe Ay Max 8¢
Phi 1.37 59163 310-4 0.77 0.0092 0.4 0.005
Phi-Cor 1.6 22163 310° 0.37 0.0042 — —

w 1.92 4.116-3 1.310° 0.057 0.001 0.34 0.004
W-NLFDO 1.96 39164 1.510° — — 0.37 0.0042
Polar 1.7 5163 310* 0.32 0.0047 0.23 0.0062
Polar-NLFDO 1.73 3163 310° 0.24 0.0025 0.18 0.0039

Note. E=1.598.
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TABLE VI
Two Baby Skyrmions on a 401x 401 Grid Using the 4th Order Runge—Kutta Method

Method AE Awd Max Sy Agd Max 8¢
Phi 6107 8.6 0.044 5.7 0.04
Phi-Cor 9103 33 0.0065 — —
w 910 1.9 0.023 36 0.025
W-NLFDO 1.2 102 — — 33 0.0065
Polar 6103 1.4 0.0038 2.3 0.0046
Polar-NLFDO 6103 15 0.006 2.1 0.0067

Note. E=3.616.

Further Tests

In the last sections we have given results of simulations obtained using the 4th o
Runge—Kutta method for the time integration. We have also repeated some of these :
lations using the leapfrog method and have seen essentially no difference in terms c
final results and accuracy except in the case of the polar angle methods. In this last ca
leapfrog method appeared to be unstable and the simulations have always blown up.

We have also repeated some of the simulations for the two Skyrme models using ¢
with 4 times as many points—keeping the “physical” dimension of the lattice unchan
and so decreasingix anddt by a factor of 2. Overall, the effects have been the same f
most methods of integration: the errors decreased by a factor of about 20 and this
observed for both the 4th order Runge—Kutta method and the leapfrog method (with a
exceptions for the leapfrog method).

When boosting solitons on a lattice, it is natural to make them travel along one of
lattice’s main axis. This may bias the results of the simulations. To check that we do
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FIG. 2. Baby Skyrmion scattering: mgyq 8|¢| for the Phi-Cor method.
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TABLE VII
Integration Time (s) for 100 Time Steps
on a 201x 201 Grid

Method RK4 Leapfrog
Phi 133 70
Phi-Cor 139 73
W 145 72.5
W-NLFDO 159 80
Polar 280 —
Polar-NLFDO 302 —

have such a bias we have boosted our Skyrmions along different directions and have ft
no difference for either of the Skyrme models. We also verified that the 90 degree scatte
had taken place in all these cases.

We should also say a few words about the resources needed to implement the val
methods of our tests. When using the real vegtare need 50% more storage space that
with the complex fieldw or the polar angles. When using multiple maps, we also need ¢
extra array to store a number telling us which map is used, but this can be done using an:
of characters (or even a single bit per lattice site) and thus it requires a negligible amour
extra computer memory. To implement the Runge—Kutta method we need 3 copies of
fields while the leapfrog method requires only 2 copies. Thus the most economical mett
in terms of storage requirement, is the leapfrog method foutfields. This combination
requires only just over 50% of the memory needed to use the Runge—Kutta wjfi éhe.

In terms of speed, the leapfrog method is, as expected, about 2 times faster thar
Runge—Kutta method. Using multi-map fields also is slower than using fieéds. This is
because the extra time required for checking and converting the fields between the diffe
maps is larger than the time gained by having to deal with only 2 fields instead of 3.

In Table VII we report the time required to perform 100 integration steps on & ZWIL
grid for the Skyrme models. To increase the reliability of our work, we had implement
in a single program the various methods of integration for the 3 models we analysed.
program thus had to perform many context switches and unecessarily large loops w
could affect the speed of the code. Using a single program for any specific method wc
most probably result in a better performance than the ones given below. Our tests v
performed on a sparc Ultra 2 300 Mhz fitted with 1 GB of RAM.

8. FURTHER METHODS

There are other methods of integrating the time evolution of models valued on the spt
S or some other manifolds. One of the first numerical integrations [10] of thel(?
dimensionalS’c model was performed by first discretising the action of the model ar
then deriving the equation of motion from it. This method has some advantages like giv
an expression for the total energy that is automaticaly conserved. Unfortunately it is m
difficult to apply this method to models containing higher order terms like the Skyrme ter

We have also tested other methods of integration. First of all, we have used a 25 p
Laplacian for theS> model using the real vecter. In this case the Laplacian is proportional
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to the expression

Ap(, ) ~{alp( +1, j+D+¢(i -1, -D+¢(+1j-D+¢Gi—1]+1)]
+olp( +1, )+ —1,))+¢G, |+ +¢G, | —1)]
+elp( +2, )+ -2 ])+¢(. ] -2+ ¢, ] +2)]
+dlo( +1, ]+ +¢o( +1 -2+ -Lj+2)+¢( -1 ]2
+o(+2, ] +D+o( +2, )] -D+o( -2, j+D+o( -2, ] — 1]
+efpli +2, ]+ 4+ -2 ]+ +d( +2, ] =2+ ¢ —2,] —2)]

1
—4(a+b+c+2d+e)¢(i,j)}ﬁ. (8.1)

Different choices of the parametess. .., e give different Laplacians. Note that our
9 point Laplacian correspondsde= d =e= 0. A convenient choice is provided by taking
a==68/27, b=-58/81, c=-8/27, d=10/81, ande=—-11/648 for, as shown by
Rutenberg [11], such a choice of “lattice” Laplacian has a vaniskfirtgrm in its Fourier
transform and, in addition, it€® andk® average to zero. We have performed some tests w
this choice of Laplacian and have found that, indeed, it introduced very little perturba
of a one Skyrmion field; hence a soliton of the p&emodel changed its size very little
and so did not blow up in any of our simulations. However, the price to be paid for the
of this Laplacian is the time needed for the simulation to be completed (when comp:
with the simulations which used a nine point Laplacian, the 25 point ones required al
2.5 times more computer time to perform the same integration).

All simulations reported in this paper involved square, equally spaced, grids v
dx=dy. We have also looked at irregular, in general rectangular, grids and a hexag
grid. In the first case, to eliminate the effects of the boundaries we magjietb a regular
gridin (z;, zp) by z; = #jm (for some choice o& and with(—1 < z; < 1) and similarily
with y andz,. This has eliminated most of the effects of the boundaries but compens:
for it by significantly decreasing the accuracy of the numerical method everywhere in
grid. The gain was overcompensated by the loss. Our view has become that to reduc
effects of the waves reflecting from the boundaries it is better to introduce some absor;
at the boundaries rather than modify the grid itself. The results of the use of hexagonal
were very much as expected; the results were more accurate but not sufficiently so to jt
the larger memory requirements (assuming the sarmmore points are needed to covel
the same “physical” area).

To increase the accuracy, we have also implemented fixed multi-grid methods. Her
idea involves embedding grids of different mesh sizes located, in an onion like fashiol
the centre of the grid. The embedded grids all have the same number of points but they
mesh sized x half the size of the grid they are embedded into. So if the outer lattice exte
from —L to L (in both thex andy directions) with mesh sizéx, =L /(N — 1), whereN
is the number of points along each direction of the grid, then the second grid extends
—L /2 toL/2 with a mesh sizelx; =dxy/2. In general tha'’s grid extends from-L /(2")
to L/(2") and has a mesh sizb, =dx;/(2").

Integrating the different meshes separately and merging them after each integratior
we have been able to use the same array for the two extra temporary fields needed f
Runge—Kutta method. This means that by using 2 embedded grids we could reduc
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mesh sizal x by a factor of two (at the centre of the grid) and use onl$ df the memory
needed for the original grid, while using a single grid with similarly redutedverywhere
on the grid this time, would require 4 times as much memory. For 3 embedded grids,
mesh size at the centre is reduced by a factor of 4 with opyiBcrease in the memory
requirement, while a single grid with the sadvewould raise the memory needs by a factor
of 16.

We have used the multigrid methods to study the scattering of solitons as well as
blowing up of a singleS? soliton [3]. The motivation for reducing the mesh size at the
centre of the grid comes from the fact that in most cases we are interested in a scatte
which takes place at the centre of the grid. Thus the fields change the most at the cent
the grid and it is there that we need higher accuracy. The multigrid method can also be
to increase the size of the lattice so that the waves, usually generated during the scatte
take longer to reach the edge of the grid and so have a smaller impact on the scatte
itself. Waves can usually be absorbed on the edges of the grid, but the absorption is n
perfect and there is always a small amount of reflection taking place. Using a larger ¢
reduces such effects.

We have not implemented our multigrid methods with the leapfrog method. In this ce
the gain in memory requirement is less important. The main reason for this is that in
leapfrog method we must keep 2 copies of the fields everywhere on the grid and so we
unable to use the same extra temporary fields for different subgrids. To enshdxdrids
we would thus need times the memory required for a single grid.

The spectral method has also been applied, with success, by P. Sutcliffe [12] for the b
Skyrme model using the¢ field formulation. His results are promising but because of th
global nature of the spectral methods, itis not clear if they can be used for multi-map fiel

9. CONCLUSIONS

It is clear that solving partial differential equations on a non-flat manifold requires tl
development of special methods to take into account the curvature of the manifold.
have looked at three different methods of performing a numerical integration of sig|
models valued ir§?; they involved describing the fields of the model by, respectively, a un
length real vector, the polar angles on the sphere, or a complex field corresponding tc
stereographic projection & onto the complex plane.

When we use the complex field or the polar angle formulations it is advisable to use t
differentmaps to avoid coordinates singularities. Each point on the lattice is described by
map and when the derivatives of the field, at this point, are calculated the adjacent points
have to be converted to this map. Moreover, the map may vary as the fields evolve with ti
Thus to implement such methods the code must perform the necessary bookkeeping t
sure that any computation involving fields at different points is performed in a specific m:

Our tests have shown that all our simulations, which involved 3 different descriptions
the sphere and which used finite difference operators for spatial derivatives, give reli
results. However, when more accurate results are required each of our methods ca
improved; when using the unit length vectprthe numerical errors can be decreased b
modifying the various differential operators appearing in the equations to take into accc
the fact that the 3 components of the vector are not independent. For the polar angle
the complex fields we have derived some nonlinear finite difference differential operat
which, when used, also improve the quality of the integration.
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We have also compared the leapfrog and the 4th order Runge—Kutta methods and
no significant difference between the two, except that the leapfrog method seemed uns
when used with the polar angles.
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